
An Introduction to Hypergraph Containers

Sam Spiro, UC San Diego.

Based off of lecture notes by Balogh

Independent Sets of Hypergraphs

Recall that a hypergraph H is a pair (V ,E) where V = V (H) is a
set (the vertex set) and E = E (H) is a subsets of 2V (the edge
set).

An independent set I is a subset of V such that for all e ∈ E ,
e 6⊂ I . We let I(H) denote the set of independent sets of H and
we let α(H) denote the size of a largest independent set of H.
Many problems in combinatorics can be phrased in terms of
independent sets of hypergraphs.

Independent Sets of Hypergraphs

Recall that a hypergraph H is a pair (V ,E) where V = V (H) is a
set (the vertex set) and E = E (H) is a subsets of 2V (the edge
set).

An independent set I is a subset of V such that for all e ∈ E ,
e 6⊂ I .

We let I(H) denote the set of independent sets of H and
we let α(H) denote the size of a largest independent set of H.
Many problems in combinatorics can be phrased in terms of
independent sets of hypergraphs.

Independent Sets of Hypergraphs

Recall that a hypergraph H is a pair (V ,E) where V = V (H) is a
set (the vertex set) and E = E (H) is a subsets of 2V (the edge
set).

An independent set I is a subset of V such that for all e ∈ E ,
e 6⊂ I . We let I(H) denote the set of independent sets of H and
we let α(H) denote the size of a largest independent set of H.

Many problems in combinatorics can be phrased in terms of
independent sets of hypergraphs.

Independent Sets of Hypergraphs

Recall that a hypergraph H is a pair (V ,E) where V = V (H) is a
set (the vertex set) and E = E (H) is a subsets of 2V (the edge
set).

An independent set I is a subset of V such that for all e ∈ E ,
e 6⊂ I . We let I(H) denote the set of independent sets of H and
we let α(H) denote the size of a largest independent set of H.
Many problems in combinatorics can be phrased in terms of
independent sets of hypergraphs.

Independent Sets of Hypergraphs

For example, let H∆
n be the hypergraph with V = E (Kn) and E

consisting of all triples {e, f , g} ⊆ E (Kn) which form a triangle.

With this, independent sets I(H∆
n) correspond to triangle-free

subgraphs of Kn. In particular,

Theorem (Mantel 1907)

α(H∆
n) =

⌊
n2/4

⌋
.

Independent Sets of Hypergraphs

For example, let H∆
n be the hypergraph with V = E (Kn) and E

consisting of all triples {e, f , g} ⊆ E (Kn) which form a triangle.
With this, independent sets I(H∆

n) correspond to triangle-free
subgraphs of Kn.

In particular,

Theorem (Mantel 1907)

α(H∆
n) =

⌊
n2/4

⌋
.

Independent Sets of Hypergraphs

For example, let H∆
n be the hypergraph with V = E (Kn) and E

consisting of all triples {e, f , g} ⊆ E (Kn) which form a triangle.
With this, independent sets I(H∆

n) correspond to triangle-free
subgraphs of Kn. In particular,

Theorem (Mantel 1907)

α(H∆
n) =

⌊
n2/4

⌋
.

Independent Sets of Hypergraphs

As another example, define HAP
n,k by V = [n] := {1, . . . , n} and

{i1, . . . , ik} ∈ E if this set forms a k-term arithmetic progression.

Independent sets I(HAP
n,k) correspond to sets not containing any

k-AP, so in particular:

Theorem (Szemerédi 1975)

For any fixed k,
α(HAP

n,k) = o(n).

Independent Sets of Hypergraphs

As another example, define HAP
n,k by V = [n] := {1, . . . , n} and

{i1, . . . , ik} ∈ E if this set forms a k-term arithmetic progression.
Independent sets I(HAP

n,k) correspond to sets not containing any
k-AP

, so in particular:

Theorem (Szemerédi 1975)

For any fixed k,
α(HAP

n,k) = o(n).

Independent Sets of Hypergraphs

As another example, define HAP
n,k by V = [n] := {1, . . . , n} and

{i1, . . . , ik} ∈ E if this set forms a k-term arithmetic progression.
Independent sets I(HAP

n,k) correspond to sets not containing any
k-AP, so in particular:

Theorem (Szemerédi 1975)

For any fixed k,
α(HAP

n,k) = o(n).

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.

Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|?

Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)|

≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C.

For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works.

Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C |

≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|? Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.

Independent Sets of Hypergraphs

If C is a collection of sets containing every independent set,

|I(H)| ≤ |C| · 2maxC∈C |C |.

Thus if we can somehow find a set of containers C such that |C|
and |C | is small for all C ∈ C, then we’ll be able to get a significant
improvement to the trivial upper bound of |I(H)|. Note that it’s

very easy to do one or the other: take C =
(V (H)
α(H)

)
or C = {V (H)}.

The method of hypergraph containers gives a systematic way of
finding a collection C with |C| and |C | small. Let’s first try and get
a handle of how this works for graphs.

Independent Sets of Hypergraphs

If C is a collection of sets containing every independent set,

|I(H)| ≤ |C| · 2maxC∈C |C |.

Thus if we can somehow find a set of containers C such that |C|
and |C | is small for all C ∈ C, then we’ll be able to get a significant
improvement to the trivial upper bound of |I(H)|.

Note that it’s

very easy to do one or the other: take C =
(V (H)
α(H)

)
or C = {V (H)}.

The method of hypergraph containers gives a systematic way of
finding a collection C with |C| and |C | small. Let’s first try and get
a handle of how this works for graphs.

Independent Sets of Hypergraphs

If C is a collection of sets containing every independent set,

|I(H)| ≤ |C| · 2maxC∈C |C |.

Thus if we can somehow find a set of containers C such that |C|
and |C | is small for all C ∈ C, then we’ll be able to get a significant
improvement to the trivial upper bound of |I(H)|. Note that it’s

very easy to do one or the other: take C =
(V (H)
α(H)

)
or C = {V (H)}.

The method of hypergraph containers gives a systematic way of
finding a collection C with |C| and |C | small. Let’s first try and get
a handle of how this works for graphs.

Independent Sets of Hypergraphs

If C is a collection of sets containing every independent set,

|I(H)| ≤ |C| · 2maxC∈C |C |.

Thus if we can somehow find a set of containers C such that |C|
and |C | is small for all C ∈ C, then we’ll be able to get a significant
improvement to the trivial upper bound of |I(H)|. Note that it’s

very easy to do one or the other: take C =
(V (H)
α(H)

)
or C = {V (H)}.

The method of hypergraph containers gives a systematic way of
finding a collection C with |C| and |C | small.

Let’s first try and get
a handle of how this works for graphs.

Independent Sets of Hypergraphs

If C is a collection of sets containing every independent set,

|I(H)| ≤ |C| · 2maxC∈C |C |.

Thus if we can somehow find a set of containers C such that |C|
and |C | is small for all C ∈ C, then we’ll be able to get a significant
improvement to the trivial upper bound of |I(H)|. Note that it’s

very easy to do one or the other: take C =
(V (H)
α(H)

)
or C = {V (H)}.

The method of hypergraph containers gives a systematic way of
finding a collection C with |C| and |C | small. Let’s first try and get
a handle of how this works for graphs.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R.

There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic

: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).

This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C

, (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1

, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t.

If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I .

In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u).

Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v)

:= C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C .

If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)})

,

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I .

Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices.

Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G) \ (N(v) ∪ {u ∈ V (G) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices).

Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A.

Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)).

If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1.

If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)).

Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S),

and ∆(G [C (S)]) < t − 1.

Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G)). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.

Graph Containers

A priori the set C (S) is not well defined because it’s defined in
terms of S and another set A.

Claim

If S is the output of the previous algorithm, then S uniquely
determines what A must have been at the end, i.e. C (S) is well
defined.

Accepting this, we define

C = {C (S(I)) : I ∈ I(H).}

As noted on the previous slide, this is a set of containers which
induce graphs with small maximum degree. The last thing we need
to prove is that |C| is small, and it suffices to show that
|{S(I) : I ∈ I(H)}| is small.

Graph Containers

A priori the set C (S) is not well defined because it’s defined in
terms of S and another set A.

Claim

If S is the output of the previous algorithm, then S uniquely
determines what A must have been at the end, i.e. C (S) is well
defined.

Accepting this, we define

C = {C (S(I)) : I ∈ I(H).}

As noted on the previous slide, this is a set of containers which
induce graphs with small maximum degree. The last thing we need
to prove is that |C| is small, and it suffices to show that
|{S(I) : I ∈ I(H)}| is small.

Graph Containers

A priori the set C (S) is not well defined because it’s defined in
terms of S and another set A.

Claim

If S is the output of the previous algorithm, then S uniquely
determines what A must have been at the end, i.e. C (S) is well
defined.

Accepting this, we define

C = {C (S(I)) : I ∈ I(H).}

As noted on the previous slide, this is a set of containers which
induce graphs with small maximum degree. The last thing we need
to prove is that |C| is small, and it suffices to show that
|{S(I) : I ∈ I(H)}| is small.

Graph Containers

A priori the set C (S) is not well defined because it’s defined in
terms of S and another set A.

Claim

If S is the output of the previous algorithm, then S uniquely
determines what A must have been at the end, i.e. C (S) is well
defined.

Accepting this, we define

C = {C (S(I)) : I ∈ I(H).}

As noted on the previous slide, this is a set of containers which
induce graphs with small maximum degree.

The last thing we need
to prove is that |C| is small, and it suffices to show that
|{S(I) : I ∈ I(H)}| is small.

Graph Containers

A priori the set C (S) is not well defined because it’s defined in
terms of S and another set A.

Claim

If S is the output of the previous algorithm, then S uniquely
determines what A must have been at the end, i.e. C (S) is well
defined.

Accepting this, we define

C = {C (S(I)) : I ∈ I(H).}

As noted on the previous slide, this is a set of containers which
induce graphs with small maximum degree. The last thing we need
to prove is that |C| is small, and it suffices to show that
|{S(I) : I ∈ I(H)}| is small.

Graph Containers

Lemma

If I ∈ I(H), then |S(I)| ≤ n/t.

If the algorithm is running then ∆(G [A]) ≥ t − 1. Thus every time
we add a vertex v to S , we delete from A the vertex v and all of
its (at least t − 1) neighbors. Because A has n vertices to start
and we remove at least t vertices each time an element is added to
S , we must have |S | ≤ n/t.

In total we have

|C| ≤ |{S(I) : I ∈ I(H)}| ≤
∑

k≤n/t

(
n

k

)
,

giving the desired result.

Graph Containers

Lemma

If I ∈ I(H), then |S(I)| ≤ n/t.

If the algorithm is running then ∆(G [A]) ≥ t − 1.

Thus every time
we add a vertex v to S , we delete from A the vertex v and all of
its (at least t − 1) neighbors. Because A has n vertices to start
and we remove at least t vertices each time an element is added to
S , we must have |S | ≤ n/t.

In total we have

|C| ≤ |{S(I) : I ∈ I(H)}| ≤
∑

k≤n/t

(
n

k

)
,

giving the desired result.

Graph Containers

Lemma

If I ∈ I(H), then |S(I)| ≤ n/t.

If the algorithm is running then ∆(G [A]) ≥ t − 1. Thus every time
we add a vertex v to S , we delete from A the vertex v and all of
its (at least t − 1) neighbors.

Because A has n vertices to start
and we remove at least t vertices each time an element is added to
S , we must have |S | ≤ n/t.

In total we have

|C| ≤ |{S(I) : I ∈ I(H)}| ≤
∑

k≤n/t

(
n

k

)
,

giving the desired result.

Graph Containers

Lemma

If I ∈ I(H), then |S(I)| ≤ n/t.

If the algorithm is running then ∆(G [A]) ≥ t − 1. Thus every time
we add a vertex v to S , we delete from A the vertex v and all of
its (at least t − 1) neighbors. Because A has n vertices to start
and we remove at least t vertices each time an element is added to
S , we must have |S | ≤ n/t.

In total we have

|C| ≤ |{S(I) : I ∈ I(H)}| ≤
∑

k≤n/t

(
n

k

)
,

giving the desired result.

Graph Containers

Lemma

If I ∈ I(H), then |S(I)| ≤ n/t.

If the algorithm is running then ∆(G [A]) ≥ t − 1. Thus every time
we add a vertex v to S , we delete from A the vertex v and all of
its (at least t − 1) neighbors. Because A has n vertices to start
and we remove at least t vertices each time an element is added to
S , we must have |S | ≤ n/t.

In total we have

|C| ≤ |{S(I) : I ∈ I(H)}| ≤
∑

k≤n/t

(
n

k

)
,

giving the desired result.

d-regular Graphs

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

Our main application of this lemma is to effectively bound |I(G)|
when G is a d-regular graph. As a test case, if G is n/2d disjoint
copies of Kd ,d , then

|I(G)| = (2d+1 − 1)n/2d = 2n/2+o(n) if d = ω(1).

We’ll show that this bound is asymptotically tight (for a reasonable
range of d).

d-regular Graphs

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

Our main application of this lemma is to effectively bound |I(G)|
when G is a d-regular graph.

As a test case, if G is n/2d disjoint
copies of Kd ,d , then

|I(G)| = (2d+1 − 1)n/2d = 2n/2+o(n) if d = ω(1).

We’ll show that this bound is asymptotically tight (for a reasonable
range of d).

d-regular Graphs

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

Our main application of this lemma is to effectively bound |I(G)|
when G is a d-regular graph. As a test case, if G is n/2d disjoint
copies of Kd ,d , then

|I(G)| = (2d+1 − 1)n/2d

= 2n/2+o(n) if d = ω(1).

We’ll show that this bound is asymptotically tight (for a reasonable
range of d).

d-regular Graphs

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
(n
n/t

)
.

Our main application of this lemma is to effectively bound |I(G)|
when G is a d-regular graph. As a test case, if G is n/2d disjoint
copies of Kd ,d , then

|I(G)| = (2d+1 − 1)n/2d = 2n/2+o(n) if d = ω(1).

We’ll show that this bound is asymptotically tight (for a reasonable
range of d).

d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C.

As
noted before, we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree. Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.

d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C. As
noted before, we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree. Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.

d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C. As
noted before, we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree.

Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.

d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C. As
noted before, we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree. Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.

d-regular Graphs

Lemma

If G is an n-vertex d-regular graph with C ⊆ V (G) and
|C | = n/2 + εn, then ∆(G [C]) ≥ εd.

Note that taking |C | > n/2 is a natural choice since the disjoint
union of Kd ,d ’s shows we can have independent sets of size n/2. In
other words, this is a supersaturation result saying that if G is a
d-regular graph, then (morally speaking) any set of size
(1 + ε)α(G) contains many edges.

In general to use the method of containers one often needs some
form of supersaturation.

d-regular Graphs

Lemma

If G is an n-vertex d-regular graph with C ⊆ V (G) and
|C | = n/2 + εn, then ∆(G [C]) ≥ εd.

Note that taking |C | > n/2 is a natural choice since the disjoint
union of Kd ,d ’s shows we can have independent sets of size n/2.

In
other words, this is a supersaturation result saying that if G is a
d-regular graph, then (morally speaking) any set of size
(1 + ε)α(G) contains many edges.

In general to use the method of containers one often needs some
form of supersaturation.

d-regular Graphs

Lemma

If G is an n-vertex d-regular graph with C ⊆ V (G) and
|C | = n/2 + εn, then ∆(G [C]) ≥ εd.

Note that taking |C | > n/2 is a natural choice since the disjoint
union of Kd ,d ’s shows we can have independent sets of size n/2. In
other words, this is a supersaturation result saying that if G is a
d-regular graph, then (morally speaking) any set of size
(1 + ε)α(G) contains many edges.

In general to use the method of containers one often needs some
form of supersaturation.

d-regular Graphs

Lemma

If G is an n-vertex d-regular graph with C ⊆ V (G) and
|C | = n/2 + εn, then ∆(G [C]) ≥ εd.

Note that taking |C | > n/2 is a natural choice since the disjoint
union of Kd ,d ’s shows we can have independent sets of size n/2. In
other words, this is a supersaturation result saying that if G is a
d-regular graph, then (morally speaking) any set of size
(1 + ε)α(G) contains many edges.

In general to use the method of containers one often needs some
form of supersaturation.

d-regular Graphs

Recall that we’re trying to bound |I(G)| for a d-regular graph G ,
and that for C a set of containers we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

Using C from our container lemma gives

|C| ≈
(

n

n/t

)
≈ 2

n
t

log n

and that each C has maximum degree at most t, so by the
previous lemma we have

2|C | ≤ 2n/2+ t
d
n.

These bounds are optimized when 2
n
t

log n = 2
t
d
n, i.e. when

t =
√
d log n. In total this gives an upper bound of

2
n/2+2

√
log n
d

n
,

and this equals 2n/2+o(n) provided d = ω(log n).

d-regular Graphs

Recall that we’re trying to bound |I(G)| for a d-regular graph G ,
and that for C a set of containers we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

Using C from our container lemma gives

|C| ≈
(

n

n/t

)
≈ 2

n
t

log n

and that each C has maximum degree at most t

, so by the
previous lemma we have

2|C | ≤ 2n/2+ t
d
n.

These bounds are optimized when 2
n
t

log n = 2
t
d
n, i.e. when

t =
√
d log n. In total this gives an upper bound of

2
n/2+2

√
log n
d

n
,

and this equals 2n/2+o(n) provided d = ω(log n).

d-regular Graphs

Recall that we’re trying to bound |I(G)| for a d-regular graph G ,
and that for C a set of containers we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

Using C from our container lemma gives

|C| ≈
(

n

n/t

)
≈ 2

n
t

log n

and that each C has maximum degree at most t, so by the
previous lemma we have

2|C | ≤ 2n/2+ t
d
n.

These bounds are optimized when 2
n
t

log n = 2
t
d
n, i.e. when

t =
√
d log n. In total this gives an upper bound of

2
n/2+2

√
log n
d

n
,

and this equals 2n/2+o(n) provided d = ω(log n).

d-regular Graphs

Recall that we’re trying to bound |I(G)| for a d-regular graph G ,
and that for C a set of containers we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

Using C from our container lemma gives

|C| ≈
(

n

n/t

)
≈ 2

n
t

log n

and that each C has maximum degree at most t, so by the
previous lemma we have

2|C | ≤ 2n/2+ t
d
n.

These bounds are optimized when 2
n
t

log n = 2
t
d
n, i.e. when

t =
√
d log n.

In total this gives an upper bound of

2
n/2+2

√
log n
d

n
,

and this equals 2n/2+o(n) provided d = ω(log n).

d-regular Graphs

Recall that we’re trying to bound |I(G)| for a d-regular graph G ,
and that for C a set of containers we have

|I(G)| ≤ |C| · 2maxC∈C |C |.

Using C from our container lemma gives

|C| ≈
(

n

n/t

)
≈ 2

n
t

log n

and that each C has maximum degree at most t, so by the
previous lemma we have

2|C | ≤ 2n/2+ t
d
n.

These bounds are optimized when 2
n
t

log n = 2
t
d
n, i.e. when

t =
√
d log n. In total this gives an upper bound of

2
n/2+2

√
log n
d

n
,

and this equals 2n/2+o(n) provided d = ω(log n).

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.

Hypergraph Containers

There are many different variants of the container lemma for
hypergraphs, which is both a benefit and an annoyance.

The key
requirement for all of them is that the relevant hypergraph H must
be “spread out.”

In particular, we require the maximum degree of H to be close to
its average degree, and for its codegrees to be relatively small.

To state this precisely, for S ⊆ V (H) we define d(S) to be the
number of edges in H containing S . We define

∆i (H) = max
S⊆V (H):|S |=i

d(S)

to be the maximum i-degree of H.

Hypergraph Containers

There are many different variants of the container lemma for
hypergraphs, which is both a benefit and an annoyance. The key
requirement for all of them is that the relevant hypergraph H must
be “spread out.”

In particular, we require the maximum degree of H to be close to
its average degree, and for its codegrees to be relatively small.

To state this precisely, for S ⊆ V (H) we define d(S) to be the
number of edges in H containing S . We define

∆i (H) = max
S⊆V (H):|S |=i

d(S)

to be the maximum i-degree of H.

Hypergraph Containers

There are many different variants of the container lemma for
hypergraphs, which is both a benefit and an annoyance. The key
requirement for all of them is that the relevant hypergraph H must
be “spread out.”

In particular, we require the maximum degree of H to be close to
its average degree, and for its codegrees to be relatively small.

To state this precisely, for S ⊆ V (H) we define d(S) to be the
number of edges in H containing S . We define

∆i (H) = max
S⊆V (H):|S |=i

d(S)

to be the maximum i-degree of H.

Hypergraph Containers

There are many different variants of the container lemma for
hypergraphs, which is both a benefit and an annoyance. The key
requirement for all of them is that the relevant hypergraph H must
be “spread out.”

In particular, we require the maximum degree of H to be close to
its average degree, and for its codegrees to be relatively small.

To state this precisely, for S ⊆ V (H) we define d(S) to be the
number of edges in H containing S .

We define

∆i (H) = max
S⊆V (H):|S |=i

d(S)

to be the maximum i-degree of H.

Hypergraph Containers

There are many different variants of the container lemma for
hypergraphs, which is both a benefit and an annoyance. The key
requirement for all of them is that the relevant hypergraph H must
be “spread out.”

In particular, we require the maximum degree of H to be close to
its average degree, and for its codegrees to be relatively small.

To state this precisely, for S ⊆ V (H) we define d(S) to be the
number of edges in H containing S . We define

∆i (H) = max
S⊆V (H):|S |=i

d(S)

to be the maximum i-degree of H.

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

For r a positive integer, there exists a constant δ > 0 such that the
following holds. Assume H is an r-uniform hypergraph such that

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r]. Then there exists a collection of containers C such
that

(a) |C| ≤
∑

k≤qr |V (H)|
(|V (H)|

k

)
,

(b) |C | ≤ (1− δ/c)|V (H)| for all C ∈ C.

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

If

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(a)

|C| ≈
(
|V (H)|
qr |V (H)|

)
.

If i = 1, then the hypothesis of the theorem requires
∆1(H) ≤ c |E (H)|/|V (H)|, i.e. the max degree is close to the
average degree. In general, ∆i (H) is at most qi−1 times the
average degree of H, and the smaller q is (i.e. the more dispersed
the edges of H are), the better control one has over |C|.

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

If

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(a)

|C| ≈
(
|V (H)|
qr |V (H)|

)
.

If i = 1, then the hypothesis of the theorem requires
∆1(H) ≤ c |E (H)|/|V (H)|, i.e. the max degree is close to the
average degree.

In general, ∆i (H) is at most qi−1 times the
average degree of H, and the smaller q is (i.e. the more dispersed
the edges of H are), the better control one has over |C|.

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

If

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(a)

|C| ≈
(
|V (H)|
qr |V (H)|

)
.

If i = 1, then the hypothesis of the theorem requires
∆1(H) ≤ c |E (H)|/|V (H)|, i.e. the max degree is close to the
average degree. In general, ∆i (H) is at most qi−1 times the
average degree of H

, and the smaller q is (i.e. the more dispersed
the edges of H are), the better control one has over |C|.

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

If

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(a)

|C| ≈
(
|V (H)|
qr |V (H)|

)
.

If i = 1, then the hypothesis of the theorem requires
∆1(H) ≤ c |E (H)|/|V (H)|, i.e. the max degree is close to the
average degree. In general, ∆i (H) is at most qi−1 times the
average degree of H, and the smaller q is (i.e. the more dispersed
the edges of H are), the better control one has over |C|.

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

There exist δ > 0 such that if

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(b) |C | ≤ (1− δ/c)|V (H)| for all C ∈ C.

In general the bound of (b) for |C | is too weak

, and in this case
one reapplies the container lemma to H[C]. Because |C | is smaller
than |V (H)| for some constant factor, one only has to iterate this
a few number of times (assuming H is “similar” to all its
subgraphs H[C]).

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

There exist δ > 0 such that if

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(b) |C | ≤ (1− δ/c)|V (H)| for all C ∈ C.

In general the bound of (b) for |C | is too weak, and in this case
one reapplies the container lemma to H[C].

Because |C | is smaller
than |V (H)| for some constant factor, one only has to iterate this
a few number of times (assuming H is “similar” to all its
subgraphs H[C]).

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

There exist δ > 0 such that if

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(b) |C | ≤ (1− δ/c)|V (H)| for all C ∈ C.

In general the bound of (b) for |C | is too weak, and in this case
one reapplies the container lemma to H[C]. Because |C | is smaller
than |V (H)| for some constant factor, one only has to iterate this
a few number of times

(assuming H is “similar” to all its
subgraphs H[C]).

Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

There exist δ > 0 such that if

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r], then there exists a set of containers C with

(b) |C | ≤ (1− δ/c)|V (H)| for all C ∈ C.

In general the bound of (b) for |C | is too weak, and in this case
one reapplies the container lemma to H[C]. Because |C | is smaller
than |V (H)| for some constant factor, one only has to iterate this
a few number of times (assuming H is “similar” to all its
subgraphs H[C]).

Hypergraph Containers

Lastly, I’ll note that many hypergraphs of interests satisfy the
conditions of this container lemma.

For example, this holds with
H∆
n the hypergraph of triangles of Kn, and HAP

n,k the hypergraph of
k-term arithmetic progressions.

Thus using the lemma and some (mostly routine) computations,
one can immediately deduce nice results for problems involving
these hypergraphs.

Hypergraph Containers

Lastly, I’ll note that many hypergraphs of interests satisfy the
conditions of this container lemma. For example, this holds with
H∆
n the hypergraph of triangles of Kn, and HAP

n,k the hypergraph of
k-term arithmetic progressions.

Thus using the lemma and some (mostly routine) computations,
one can immediately deduce nice results for problems involving
these hypergraphs.

Hypergraph Containers

Lastly, I’ll note that many hypergraphs of interests satisfy the
conditions of this container lemma. For example, this holds with
H∆
n the hypergraph of triangles of Kn, and HAP

n,k the hypergraph of
k-term arithmetic progressions.

Thus using the lemma and some (mostly routine) computations,
one can immediately deduce nice results for problems involving
these hypergraphs.

The End

Thank You!

	Independent Sets of Hypergraphs
	Graph Container Lemma
	d-regular Graphs
	Hypergraph Containers

