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Independent Sets of Hypergraphs

Recall that a hypergraph H is a pair (V ,E ) where V = V (H) is a
set (the vertex set) and E = E (H) is a subsets of 2V (the edge
set).

An independent set I is a subset of V such that for all e ∈ E ,
e 6⊂ I . We let I(H) denote the set of independent sets of H and
we let α(H) denote the size of a largest independent set of H.
Many problems in combinatorics can be phrased in terms of
independent sets of hypergraphs.
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Independent Sets of Hypergraphs

For example, let H∆
n be the hypergraph with V = E (Kn) and E

consisting of all triples {e, f , g} ⊆ E (Kn) which form a triangle.

With this, independent sets I(H∆
n ) correspond to triangle-free

subgraphs of Kn. In particular,

Theorem (Mantel 1907)

α(H∆
n ) =

⌊
n2/4

⌋
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Independent Sets of Hypergraphs

As another example, define HAP
n,k by V = [n] := {1, . . . , n} and

{i1, . . . , ik} ∈ E if this set forms a k-term arithmetic progression.

Independent sets I(HAP
n,k ) correspond to sets not containing any

k-AP, so in particular:

Theorem (Szemerédi 1975)

For any fixed k,
α(HAP

n,k ) = o(n).
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Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.

Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).

Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·
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Problems in discrete geometry.

List coloring numbers of linear hypergraphs.

The K LR conjecture.

· · ·



Independent Sets of Hypergraphs

The main problem that we’ll focus on is in estimating |I(H)|.
Because many problems can be stated in terms of independent sets
of hypergraphs, solving problems of this type has led to solutions
to a large variety of problems:

Extremal problems in random sets (Turán, Ramsey,
Szemerédi).
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Independent Sets of Hypergraphs

Okay, but how do we bound |I(H)|?

Here are some trivial bounds:

2α(H) ≤ |I(H)| ≤
(
|V (H)|
α(H)

)
2α(H) ≈ 2α(H) log |V (H)|.

The upper bound follows because every independent is contained
in a subset of size α(H).

More generally, consider C a collection of subsets of vertices such
that every independent set is a subset of some C ∈ C. For
example, C =

(V (H)
α(H)

)
:= {C ⊆ V (H) : |C | = α(H)} works. Then

|I(H)| ≤
∑
C∈C

2|C | ≤ |C| · 2maxC∈C |C |.

We call such a collection C a set of containers.
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Independent Sets of Hypergraphs

If C is a collection of sets containing every independent set,

|I(H)| ≤ |C| · 2maxC∈C |C |.

Thus if we can somehow find a set of containers C such that |C|
and |C | is small for all C ∈ C, then we’ll be able to get a significant
improvement to the trivial upper bound of |I(H)|. Note that it’s

very easy to do one or the other: take C =
(V (H)
α(H)

)
or C = {V (H)}.

The method of hypergraph containers gives a systematic way of
finding a collection C with |C| and |C | small. Let’s first try and get
a handle of how this works for graphs.
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Graph Containers

Lemma

Let G be a graph on n vertices and t ∈ R.

There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C ]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
( n
n/t

)
.

The proof of this lemma will be algorithmic: we will input an
independent set I and output a set of vertices S = S(I ).This will
be done in such a way so that (1) S corresponds to some set
C = C (S) with I ⊆ C , (2) ∆(G [C ]) < t − 1, and (3) |S | ≤ n/t. If
we can do all this, then the lemma follows relatively easily.
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Graph Containers

Goal: input I , output small S which corresponds to small C ⊃ I .

Say we wanted to do this by letting S be a single vertex of I . In
this case, a reasonable choice is to let S = {v} where
d(v) = maxu∈I d(u). Indeed, given S = {v} we have
I ⊆ V (G ) \ N(v) := C . If d(v) is large then |C | is relatively small.

In fact, we can improve upon this by taking

C = V (G ) \ (N(v) ∪ {u ∈ V (G ) : d(u) > d(v)}),

since v is the vertex of largest degree in I . Thus even if d(v) is
small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.
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small we can remove a lot of vertices. Our actual algorithm is
essentially just an iterated version of this idea.
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Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices).

Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A.

Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )).

If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1.

If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)).

Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S),

and ∆(G [C (S)]) < t − 1.



Graph Containers

Input an independent set I . Start with S = ∅ (the selected
vertices) and A = V (G ) (the available vertices). Iteratively
proceed as follows:

Step 1. If ∆(G [A]) < t − 1, output S(I ) = S and set
C (S) = S ∪ A. Otherwise:

Step 2. Let v ∈ A be the vertex with maximum degree in G [A]
(with ties broken according to some arbitrary ordering of V (G )). If
v /∈ I , then set A = A \ {v} and repeat Step 1. If v ∈ I :

Step 3. Set S = S ∪ {v} and A = A \ ({v} ∪ NG [A](v)). Repeat
Step 1.

By construction I ⊆ S ∪ A = C (S), and ∆(G [C (S)]) < t − 1.



Graph Containers

A priori the set C (S) is not well defined because it’s defined in
terms of S and another set A.

Claim

If S is the output of the previous algorithm, then S uniquely
determines what A must have been at the end, i.e. C (S) is well
defined.

Accepting this, we define

C = {C (S(I )) : I ∈ I(H).}

As noted on the previous slide, this is a set of containers which
induce graphs with small maximum degree. The last thing we need
to prove is that |C| is small, and it suffices to show that
|{S(I ) : I ∈ I(H)}| is small.
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Graph Containers

Lemma

If I ∈ I(H), then |S(I )| ≤ n/t.

If the algorithm is running then ∆(G [A]) ≥ t − 1. Thus every time
we add a vertex v to S , we delete from A the vertex v and all of
its (at least t − 1) neighbors. Because A has n vertices to start
and we remove at least t vertices each time an element is added to
S , we must have |S | ≤ n/t.

In total we have

|C| ≤ |{S(I ) : I ∈ I(H)}| ≤
∑

k≤n/t

(
n

k

)
,

giving the desired result.
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d-regular Graphs

Lemma

Let G be a graph on n vertices and t ∈ R. There is a collection C
of containers such that

(a) For all C ∈ C, we have ∆(G [C ]) < t − 1.

(b) |C| ≤
∑

k≤n/t
(n
k

)
≈
( n
n/t

)
.

Our main application of this lemma is to effectively bound |I(G )|
when G is a d-regular graph. As a test case, if G is n/2d disjoint
copies of Kd ,d , then

|I(G )| = (2d+1 − 1)n/2d = 2n/2+o(n) if d = ω(1).

We’ll show that this bound is asymptotically tight (for a reasonable
range of d).
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d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C.

As
noted before, we have

|I(G )| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree. Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.



d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C. As
noted before, we have

|I(G )| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree. Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.



d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C. As
noted before, we have

|I(G )| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree.

Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.



d-regular Graphs

To prove this, we start with a d-regular graph G and apply the
container lemma (for some t) to get a set of containers C. As
noted before, we have

|I(G )| ≤ |C| · 2maxC∈C |C |.

However, our lemma tells us nothing about |C |, only that it has
small maximum degree. Thus we need to show that every induced
subgraph of a d-regular graph with small maximum degree is small.



d-regular Graphs

Lemma

If G is an n-vertex d-regular graph with C ⊆ V (G ) and
|C | = n/2 + εn, then ∆(G [C ]) ≥ εd.

Note that taking |C | > n/2 is a natural choice since the disjoint
union of Kd ,d ’s shows we can have independent sets of size n/2. In
other words, this is a supersaturation result saying that if G is a
d-regular graph, then (morally speaking) any set of size
(1 + ε)α(G ) contains many edges.

In general to use the method of containers one often needs some
form of supersaturation.
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d-regular Graphs

Recall that we’re trying to bound |I(G )| for a d-regular graph G ,
and that for C a set of containers we have

|I(G )| ≤ |C| · 2maxC∈C |C |.

Using C from our container lemma gives

|C| ≈
(

n

n/t

)
≈ 2

n
t

log n

and that each C has maximum degree at most t, so by the
previous lemma we have

2|C | ≤ 2n/2+ t
d
n.

These bounds are optimized when 2
n
t

log n = 2
t
d
n, i.e. when

t =
√
d log n. In total this gives an upper bound of

2
n/2+2

√
log n
d

n
,

and this equals 2n/2+o(n) provided d = ω(log n).
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and this equals 2n/2+o(n) provided d = ω(log n).
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Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

With graph containers alone one can solve a number of interesting
problems such as:

The number of q-colorings of a d-regular graph.

A random version of Sperner’s theorem.

Counting the number of Sidon sets.

Counting the number of C4-free graphs.

In each of these cases one applies the graph container lemma (or
one of its many variants) in conjunction with a supersaturation
lemma.

However, to count e.g. Ks,t-free graphs, the most natural setting is
to consider independent sets of hypergraphs.



Hypergraph Containers

There are many different variants of the container lemma for
hypergraphs, which is both a benefit and an annoyance.

The key
requirement for all of them is that the relevant hypergraph H must
be “spread out.”

In particular, we require the maximum degree of H to be close to
its average degree, and for its codegrees to be relatively small.

To state this precisely, for S ⊆ V (H) we define d(S) to be the
number of edges in H containing S . We define

∆i (H) = max
S⊆V (H):|S |=i

d(S)

to be the maximum i-degree of H.
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Hypergraph Containers

Theorem (Balogh-Morris-Samotij, Saxton-Thomason)

For r a positive integer, there exists a constant δ > 0 such that the
following holds. Assume H is an r-uniform hypergraph such that

∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r ]. Then there exists a collection of containers C such
that

(a) |C| ≤
∑

k≤qr |V (H)|
(|V (H)|

k

)
,

(b) |C | ≤ (1− δ/c)|V (H)| for all C ∈ C.
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∆i (H) ≤ qi−1 c |E (H)|
|V (H)|

for all i ∈ [r ], then there exists a set of containers C with

(a)

|C| ≈
(
|V (H)|
qr |V (H)|

)
.

If i = 1, then the hypothesis of the theorem requires
∆1(H) ≤ c |E (H)|/|V (H)|, i.e. the max degree is close to the
average degree. In general, ∆i (H) is at most qi−1 times the
average degree of H, and the smaller q is (i.e. the more dispersed
the edges of H are), the better control one has over |C|.
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In general the bound of (b) for |C | is too weak

, and in this case
one reapplies the container lemma to H[C ]. Because |C | is smaller
than |V (H)| for some constant factor, one only has to iterate this
a few number of times (assuming H is “similar” to all its
subgraphs H[C ]).
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Hypergraph Containers

Lastly, I’ll note that many hypergraphs of interests satisfy the
conditions of this container lemma.

For example, this holds with
H∆
n the hypergraph of triangles of Kn, and HAP

n,k the hypergraph of
k-term arithmetic progressions.

Thus using the lemma and some (mostly routine) computations,
one can immediately deduce nice results for problems involving
these hypergraphs.
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The End

Thank You!
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